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ABSTRACT 
This paper summarizes some of the available experimental techniques used to investigate ground response to tunnelling 
in soft ground. Emphasis is placed on the recent developments of 1G and centrifuge models. A comparison between 
different tunnelling simulation methods is presented. The recently developed gravity scale model of tunnels excavated in 
soft ground at McGill University is also described. 
 
RÉSUMÉ 
L’article suivant décris les différentes approches utilisées dans le développement de modèles réduits de tunnels en terre 
souple. Une considération particulière sera faite pour les modèles réduits 1G et centrifuge. Une comparison des 
différentes méthodes de simulation de tunnels sera faite. L’article proposera aussi une nouvelle méthode pour la 
construction de tunnels réduits en terre souple développée a l’université McGill. 
 
1. INTRODUCTION 
 
Due to the dramatic increase in urbanization found all over 
the world, tunnelling has become a preferred method for 
the construction of urban transportation systems and the 
installation of cables and pipes. With so many tunnels 
being excavated in urban areas it is important to have a 
comprehensive understanding of soil settlement around a 
tunnel and the impact of tunnel construction on nearby 
buildings and utilities. 
 
Analysis of onsite conditions during construction has 
yielded useful information. However, onsite investigation is 
limited by (a) instrument placement restrictions (e.g. depth 
restrictions, expense of instruments), and (b) safety 
concerns that prevent access to tunnels near collapse. 
Full-scale experiments are very expensive, difficult to run, 
and are hard to repeat (Chambon and Corte, 1994). 
Therefore, ground response to tunnelling is often studied 
using reduced scale physical models. 
 
The construction of a tunnel is a complex three-
dimensional process that involves many different events.  
Therefore, exact physical or numerical modelling of the 
tunnelling process is quite difficult and simplifications are 
usually necessary (Sharma et al. 2001). Laboratory model 
tests conducted under gravity, or in a centrifuge seem 
more suitable for this purpose. In fact they can single out 
the most relevant factors influencing the overall behaviour 
of the tunnel and provide valuable data for refining the 
chosen numerical model. 
 
The objective of this paper is not to provide a 
comprehensive review of previous research or previous 
research or physical models developed for the simulation 
of tunnels in soft ground,. Rather the paper discusses 
selected techniques that have been successfully used to 
investigate the stability and induced deformations due to 
tunnelling in soft ground. Both gravity models (1G) and 
centrifuge models will be considered. The paper will also 
describe a new procedure developed at McGill University 
to simulate the tunnel excavation and lining installation in 

soft ground with the help of an assembled shield under 1G 
conditions. 
 
2. GRAVITY VS CENTRIFUGE MODELING 
 
Gravity Scale Models (GSM) are investigated under the 
normal 1G condition. GSM provide the flexibility of 
carrying out the test under controlled environment, 
whereas centrifuge testing is considered to be appropriate 
for tunnel modeling since the self-weight of the ground is a 
major factor influencing ground deformation. GSM are 
much more economical compared with centrifuge, full 
scale, or onsite investigations (Atkinson, et al. 1977). 
However, for a successful 1G scale model testing, 
correlations between the model and the prototype are 
necessary; at a minimum, they have to follow the same 
physical laws (Atkinson and Potts, 1977). The usefulness 
of GSM is limited by the fact that in situ stresses are not 
fully established. Despite this limitation GSM have long 
been successfully used in soft ground tunnelling research.  
In particular, they have been used as a preliminary 
method to predict the ground response to tunnelling. The 
results of GSM tests are useful as a comparison for 
accuracy in terms of stability calculations. 
 
Centrifuge Models (CM) which originated in the Soviet 
Union, have since spread west and are now widely used 
in geotechnical testing (Atkinson and Potts, 1977). The in 
situ stress state can be accurately simulated in a 
centrifugal test as compared to a 1G test. 
 
In a centrifuge the model is rotated with an angular 
velocity, y (rad/s), at a radius R (see Fig. 1-a). This 
causes the model to experience an acceleration of a = ng 
= y

2
R, where g is the acceleration due to gravity (g = 9.81 

m/s
2
) and n is the scaling factor (Atkinson, et al. 1977). 

This means that in the centrifuge the model experiences 
forces due to gravity multiplied by n, where n depends on 
the speed of rotation. This effectively, as far as the values 
of in situ stresses are concerned, makes the model larger 
by a factor of n. 
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Figure 1 - Centrifugal acceleration of fixed and 

swinging package (Atkinson et al. 1977) 

 

Validation of the scale model results requires a set of 
scaling relations that relate the experimental model to the 
prototype’s behaviour. This relationship is described by 
the theory of scale model similitude. 
 
There are several methods of scale modeling application 
(Kline, 1986), the use of these methods will lead to the 
definition of several scaling factors that will be taken into 
account when designing and then building scale models. 
Scale model similitude was also described specifically for 
problems in soil mechanics, and more specifically when 
constructing gravity models that provide soil scaling 
relations for centrifuge testing. 
 
3. TUNNEL MODELING TECHNIQUES 
 
Several modeling techniques have been developed to 
investigate different aspects of ground response to 
tunnelling. A summary of selected methods to simulate 
tunnel excavation in soft ground is provided below. 
 
3.1 Trap Door 
 
Trap door tests have been used to study the mechanics of 
2D and 3D ground movements near the face of an 
advancing tunnel in different soils. 
 
When a trap door (see Figure 2) that supports a granular 
material is lowered, the earth pressure acting on the trap 
door decreases and the earth pressure acting around the 
trap door increases. For clay deposits, the total earth 
pressure drops when the trap door is lowered and 
recovered when the trap door is suspended. The water 
pressure also decreases when the trap door is lowered 
(Adachi et al. 2003). If the trap door is suspended for a 
period of time, the water pressure rises to approximately 
that of its hydrostatic state. Trap door models are 
considered to be an approximate method to simulate the 

tunnel excavation process by controlling the ground 
volume loss induced by the process of lowering the trap 
door. It facilitates the evaluation of the surface settlement 
and the corresponding earth pressure on and around the 
trap door resulting from soil movement. 
 

 
Figure 2 - The classical trap door problem 

(Sloan, 1989) 
 
3.2 Bury and Cover 
 
This is the simplest method for simulating a tunnel 
construction process. A tube is placed in the model 
container and soil is added to bury the tube (see Figure 
3). The method has been used by several researchers 

(e.g. Chambon and Corte, 1994, and Nomoto et al. 1999). 
This method is limited to tunnel simulation in sandy soils 
and does not simulate the directional process of 
tunnelling.  
 

 
Figure 3 - Bury and Cover Model 

 
 

         Soil placement 
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3.3 Pressurized Air 
 
Pressurized air in a rubber bag of negligible strength has 
been widely used in tunnel modeling (see Figure 4). A 
tube is pushed through the soil or buried during soil 
placement to make a tunnel; a rubber bag is then inserted 
into the simulated tunnel and pressurized. When testing 
unlined tunnels, the tube is usually removed from the soil. 
On the other hand, for testing lined tunnels the tube may 
be left in place. In the initial state conditions, the air 
pressure is equal to the overburden pressure. The air 
pressure is then lowered incrementally to simulate stress 
reductions experienced by the soil during tunneling until 
complete failure of the tunnel is achieved (Mair, 1982). 
 

 
Figure 4 - Pressurized Air Model 

 
3.4 Fluid Pressure 
 
The stability of tunnel face in cohesionless soils has been 
investigated by several researchers (Chambon and Corte, 
1994). The model usually consists of a rigid metallic tube 
with one end covered with a thin latex membrane as 
shown in Figure 5. A hydrostatic pressure is then used to 
simulate the pressure induced by a slurry shield. 
 

 
Figure 5 - Fluid Pressure Model (Chambon and 

Corte, 1994) 
 

3.5 Heavy Liquid Drainage 
 
Another approach similar to using air has been to fill the 
tunnel with a heavy liquid such as zinc chloride and then 
slowly drain it (Sharma et al. 2001). This approach 
requires that both ends of the tunnel be plugged and like 
the use of pressurized air does not account for the 
directional reduction of stresses experienced during tunnel 
advancement. 
 
3.6 Polystyrene Foam and Organic Solvent 
 
In this method, a stiff tube of polystyrene foam is buried in 
the soil (Sharma et al. 2001). In the initial state (pre-
dissolution) the foam accurately simulates the in-situ 
stresses that would be applied to the surrounding soil 
before tunnel excavation. Once exposed to an organic 
solvent the foam dissolves quickly. The reduction of 
stresses applied to the surrounding soil as the foam 
dissolves models the stress reductions experienced 
during tunnel excavation. 
 
3.7 Soil Augering 
 
This method involves the use of a small soil auger to 
excavate an opening (see Figure 6) in reconstituted or 
natural clay material (Chapman et al. 2006). Soil (usually 
clayey materials) is typically consolidated in a tank under 
a specified pressure. An auger is then used to bore 
through the soil material in order to simulate the 
excavation process. Lining segments can be installed as 
the auger excavates to further model the tunnel 
construction process more accurately. 
 

 
Figure 6 - Auger Excavation Model 

 
3.8 Miniature Tunnel Boring Machine 
 
Japanese researchers (Nomot et al. 1999) developed a 
miniature shield tunnelling machine, called the Mark IV 
(see Figure 7). This machine was designed to simulate 
the actual process of shield tunnelling as closely as 

 
     
      Air pressure 

Auger used to excavate soils 
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possible. The machine is made up of the following three 
main components: 
 
(i) The Shield: is made up of three tubes, a 100 mm 
diameter stainless steel tube houses a spiral conveyer 
with a cutting head to excavate and remove material, a 
middle tube of diameter 96 mm and 98 mm that serves as 
the tunnel lining (a series of load cells are inlaid on this 
middle tube), and a 100 mm diameter stainless steel pipe 
for simulating the tail void formation (this tube is removed 
after the complete advancement of the tunnel.) 
 
(ii) The driving component: is made up of two motors, one 
for the forward advancement of the shield part and for 
removing the tail void tube, the other for driving the 
excavation cutter. 
 
(iii) The strong box: is a 240 x 700 x 700 mm stainless 
steel box that houses the model and displacement 
measurement system. 
 
The miniature tunnel boring machine is an impressive 
piece of technology. Unfortunately, for tunnel modeling 
purposes it has some serious limitations. It took four years 
to design and develop the machine, which is a time and 
financial investment that very few others could repeat. In 
addition, the testing limitations of the machine as it is 
limited to one specific tunnel diameter, 100 mm, and can 
only be tested up to 25g, meaning that this method can 
only be used to model prototype tunnels with a maximum 
diameter of 2.5m. 
 

 
Figure 7 - Miniature TBM (Nomoto et al. 1999) 

 
4. PROPOSED TUNNEL EXCAVATION METHOD  
 
The proposed method of model tunnel simulation will 
involve a consolidated clay sample and a refinement of 
the soil augering method (see Figure 8). 
 
The tunnelling procedure will introduce an alternative way 
of installing the lining: instead of pushing a solid 
cylinder/liner into the sample to facilitate excavation, the 
lining will be replaced by a series of thin rods, arranged in 
a circular flange, that will be pushed one by one all around 
the circumference of the proposed tunnel opening while 

excavation proceeds using an auger or a similar drilling 
head. 
 
The proposed method will provide a significant 
improvement over other augering techniques by 
minimizing the soil disturbance prior to and after 
excavation as compared with the installation of a solid 
cylindrical lining. 
 

 
Figure 8 - Proposed Auger Excavation Model 

 
5. CONCLUSIONS 
 
Several tunnel excavation models were presented in this 
paper in addition to a proposed method that will be 
implemented at McGill University. The different 
advantages and disadvantages of these methods were 
investigated and it is expected that the proposed method 
will bring improvements to the technique of scale 
modelling and simulating in the area of geotechnical 
engineering. 
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